

Welcome to Stellar Magnate

In the late 1980s I played a game called Planetary Travel [https://archive.org/details/Big_Red_294_Planetary_Travel] by Brian Winn [http://gel.msu.edu/winn/index.html]. The game was a textual trading game where you had to take
a small amount of money and a space ship and travel between the planets of our solar system to make
money.

Stellar Magnate is a game written in that same genre but updated and enhanced.
Unlike the original Integer Basic that Planetary Travel was written in, this
is written in Python and makes use of asynchronous programming, abstractions
to allow multiple user interfaces, and other modern programming practices.

Stellar Magnate was written both to enjoy a little bit of nostalgia and to
have a practical problem on which to experiment with new technologies. I hope
that the game is somewhat enjoyable and the core is simple enough that new
aspiring programmers can take a look at how it works to make it their own.

Contents:

	Design Documentation
	Mechanics

	Events

	Data Model

	Urwid UI

Indices and tables

	Index

	Module Index

	Search Page

Design Documentation

These pages document the design decisions for Stellar Magnate

Contents:

	Mechanics
	Market

	Ship

	Finances

	Movement

	Combat

	Events
	User events

	Ship Events

	Market Events

	Action Events

	Query Events

	UI Events

	Data Model
	Static Data

	Dynamic Data

	Urwid UI
	Naming Conventions

	Mockups

Mechanics

This document describes the game mechanics

Market

Current

Random pricing based upon a normal distribution.

Future

Need a cyclical market pricing. This way prices rise or fall for a certain
duration. This makes the user take more care to judge whether the item’s
price is on its way up or down.

Cycle should be mostly time based so that we can recalculate the price when
a ship actually lands there rather than for every tick.

Will need to save the current state of the market so that loading a game
starts in the same place.

	Markets only have so many goods that they’re willing to buy or sell

	Markets should be rated for population, industrialization, agriculture,
mining. These affect supply and demand of categories of goods.

	Markets will accept categories of product even if they don’t sell them.
	Supply and demand drives prices. So if a market does not sell an item,
there will be a low supply. However, demand needs to be based off of how
different it is from what is already there.
	So perhaps categories need to be hierarchical. The farther away on the
hierarchy from something already sold, the less demand

Ship

Current

	Purchase more cargo space

Future

	Purchase different ships

	Each ship that you can purchase has different characteristics

Fleets

	We can organize ships into separate fleets

	Can send fleets off to trade in different locations

	Give fleets different orders about buying and selling

Finances

Current

One bank. Accessible whenever the user is on Earth.

Future

Multiple banks.

	The Syndicate:
* Can do business everywhere
* Loans money
* High interest rates
* Deposit low interest rate
* 100% safe
* May be inaccessible 50% of the time but never twice in a row

	System wide bank – Solarian National Bank
* May not be present on pirate worlds.
* Standard loans
* Deposit low-medium interest
* Safe unless war

	Capital planet bank – First Terran Bank and Trust
* Available on a subset of system worlds
* May open/close branches. Pick X% most industrial/civilized in-system worlds.
* May sometimes bankrupts but bailout 75-95% of owed money
* standard loan
* moderate interest
* War may lose all

	Planetary bank – Mercury Savings and Loan
* Available 1 world
* Low interest loans
* Deposits moderate interest
* Sometimes bankrupts bailout 0-50%
* War may lose all

Movement

Current

Travelling from one location to another constitutes one turn

Future

	Markets have distances associated with them. takes longer to travel from
Mercury to Pluto than it does to travel from Venus to Earth

	Orbits? Planets change positions?

	Fuel costs to travel

Combat

Current

	Compare number of enemies with number of weapons

	Weapons hit X enemies per turn

	Enemies cause X damage per turn

Future

	Different ships can protect in differing amounts

	Different ships have different speeds

	Order ships on a grid

	Enemies encounter the grid of ships

Events

PubMarine is used to pass events from the UI to the Dispatcher. These are the
events that are emitted over the course of the program. Events normally
report information about changes but we also use it as a general bus between
the frontend and backend to pass commands and return data as well. This
allows the frontend and backend to operate asynchronously in some cases,
decouples the precise APIs from each other, and allows us to pass a single
PubPen object around to handle communication instead of having to pass
references to each object whose methods we wanted to invoke.

User events

User events return information about user objects.

	
user.cash.update(new_cash: int, old_cash: int)

	Emitted when a change occurs in the amount of a user’s cash on hand

	Parameters:	
	new_cash (int [https://docs.python.org/2/library/functions.html#int]) – The amount of cash a user now has

	old_cash – The amount of cash the user had before

	
user.login_success(username: string)

	Emitted when a user logs in successfully.

	Parameters:	username (string [https://docs.python.org/2/library/string.html#module-string]) – The username that successfully logged in

	
user.login_failure(msg: string)

	Emitted when a login attempt fails

	Parameters:	msg (string [https://docs.python.org/2/library/string.html#module-string]) – A message explaining why the attempt failed

	
user.info(username: string, cash: int, location: string)

	Emitted in response to a query.user.info(). This comtains all
relevant information about a user.

	Parameters:	
	username (string [https://docs.python.org/2/library/string.html#module-string]) – The user who the information is about

	cash (int [https://docs.python.org/2/library/functions.html#int]) – The amount of cash the user has on their person

	location (string [https://docs.python.org/2/library/string.html#module-string]) – The location that the user is in currently

	
user.order_failure(msg: string)

	Emitted when an order attempt fails

	Parameters:	msg (string [https://docs.python.org/2/library/string.html#module-string]) – A message explaining why the attempt failed

Ship Events

Ship events return information about ship objects.

	
ship.cargo.update(amount_left: ManifestEntry, free_space: int, filled_hold: int)

	Emitted when a ship’s cargo manifest changes (commodities are bought and
sold or transferred to a warehouse)

	Parameters:	
	amount_left (ManifestEntry) – A magnate.ship.ManifestEntry that
shows how much of a commodity is left on board.

	free_space (int [https://docs.python.org/2/library/functions.html#int]) – Amount of the hold that’s free

	filled_hold (int [https://docs.python.org/2/library/functions.html#int]) – Amount of the hold that’s filled

	
ship.destinations(destinations: list)

	Emitted when the destinations a ship can travel to changes. This usually
means that the ship has moved to a new location which has different options.

	Parameters:	destinations (list) – A list of strings showing where the ship can
travel from here.

	
ship.equip.update(holdspace: int)

	Emitted when a ship’s equipment changes

	Parameters:	cargo_space – The total cargo space in the ship currently has

	
ship.info(ship_type: string, free_space: int, filled_space: int, manifest: dict of ManifestEntry)

	Emitted in response to a query.ship.info(). This contains all
relevant information about a ship.

	Parameters:	
	ship_type (string [https://docs.python.org/2/library/string.html#module-string]) – The type of ship

	free_space (int [https://docs.python.org/2/library/functions.html#int]) – How much hold space is available

	filled_space (int [https://docs.python.org/2/library/functions.html#int]) – How much hold space is used

	manifest (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The commodities that are in the hold. This is
a dictionary of ManifestEntry types

	
ship.moved(new_location: string, old_location: string)

	Emitted when a ship changes location.

	Parameters:	
	new_location (string [https://docs.python.org/2/library/string.html#module-string]) – The location that the ship moved to

	old_location (string [https://docs.python.org/2/library/string.html#module-string]) – The location that the ship moved from

	
ship.movement_failure(msg: string)

	Emitted when a ship attempted to move but failed.

	Parameters:	msg (string [https://docs.python.org/2/library/string.html#module-string]) – A message explaining why the movement failed

Market Events

Market events carry information about a specific market to the client.

	
market.event(location, commodity, price, msg: string)

	Emitted when an event occurs at a market. This is for informational
purposes. The client may choose to display the message for game flavour.
Once markets become stateful, this may become more useful.

	Parameters:	msg (string [https://docs.python.org/2/library/string.html#module-string]) – A message about the market

	
market.{location}.info(prices: dict)

	Emitted in response to a query.market.{location}.info(). This carries
information about prices of all commodities in a market.

	Parameters:	prices (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A mapping of commodity name to its current price

	
market.{location}.purchased(commodity: string, quantity: int)

	This contains information when a user successfully purchases a commodity
at a specific market.

	Parameters:	
	commodity (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the commodity that was bought

	quantity (int [https://docs.python.org/2/library/functions.html#int]) – The amount of the commodity that was purchased

	
market.{location}.sold(commodity: string, quantity: int)

	This contains information when a user successfully sold a commodity
at a specific market.

	Parameters:	
	commodity (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the commodity that was sold

	quantity (int [https://docs.python.org/2/library/functions.html#int]) – The amount of the commodity that was sold

	
market.{location}.update(commodity: string, price: int)

	Emitted when the price of a commodity changes.

	Parameters:	
	commodity (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the commodity being operated upon

	price (string [https://docs.python.org/2/library/string.html#module-string]) – The new price of the commodity

Action Events

Action events signal the dispatcher to perform an action on behalf of the
user.

	
action.ship.movement_attempt(destination: string)

	Emitted when the user requests that the ship be moved. This can trigger
a ship.moved() or ship.movement_failure() event.

	Parameters:	destination (string [https://docs.python.org/2/library/string.html#module-string]) – The location to attempt to move the ship to

	
action.user.login_attempt(username: string, password: string)

	Emitted when the user submits credentials to login. This can trigger
a user.login_success() or user.login_failure() event.

	Parameters:	
	username (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the user attempting to login

	password (string [https://docs.python.org/2/library/string.html#module-string]) – The password for the user

	
action.user.order(order: magnate.ui.event_api.Order)

	Emitted when the user requests that a commodity be bought from a market.
Triggers one of market.{location}.purchased(), market.{location}.sold(), or
user.order_failure().

	Parameters:	order (magnate.ui.event_api.Order) – All the details necessary to buy or sell
this commodity.

See also

magnate.ui.event_api.Order

Query Events

These events are requests from the frontend for information from the backend.
This could simply be to get information during initialization or it could be
to resynchronize a cache of the values if it’s noticed that something is off.

	
query.cargo.info()

	Emitted to retrieve a complete record of the cargoes that are being
carried in a ship. This triggers a ship.cargo() event.

	
query.market.{location}.info()

	Emitted to retrieve a complete record of commodities to buy and sell at
a location.

	
query.user.info(username: string)

	Emitted to retrieve a complete record of the user from the backend.

	Parameters:	username (string [https://docs.python.org/2/library/string.html#module-string]) – The user about whom to retrieve information

	
query.warehouse.{location}.info()

	Emitted to retrieve a complete record of the cargoes being held in
a location’s warehouse.

UI Events

UI events are created by a single user interface plugin for internal
communication. For instance, a menu might want to communicate that a new
window needs to be opened and populated with data. All UI events should be
namespaced under ui.[PLUGINNAME] so as not to conflict with other plugins.

Urwid Interface

These are UI Events used by the Urwid interface. Urwid has its own event
system but using it requires that the widget that wants to observe the event
must have a reference to the widget that emits it. When dealing with a deep
hierarchy of widgets it can be painful to pass these references around so the
Urwid interface makes use of our pubmarine event dispatcher for some things.

	
ui.urwid.message(msg: string, severity=MsgType.info: magnate.ui.urwid.message_win.MsgType)

	Emitted to have the message window display a new message.

	Parameters:	
	msg – The message to display to the user

	severity – Optional value that tells whether the message is merely
informational or informs the error of some error. The message_win will
display more severe messages with special highlighting.

	
ui.urwid.order_info(commodity: string, price: int)

	Emitted to inform the transaction dialog what commodity and price the user
is interested in.

	Parameters:	
	commodity (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the commodity to buy or sell

	price (int [https://docs.python.org/2/library/functions.html#int]) – Price of the commodity

Data Model

The data in Stellar Magnate is divided into two categories: static data that defines base
information and dynamic data that changes over the course of the game.

Static data is shipped in yaml files with the program. When a new Stellar Magnate game is started,
the yaml files are loaded into a database to initialize the program.

The dynamic data is generated by the game as it moves along. It is persisted into separate tables
in the database as the game progresses.

Static data and dynamic data reside in different tables in the database but the dynamic data can
reference the static tables.

Static Data

Shipped format

Game Dependent

These are various records that only the game ships because there needs to be new game logic whenever
something is added to them.

	location_type:	enumeration of known location types.
:surface: On the surface of a celestial body
:orbital: Orbiting a celestial body in the system
:dome: Exists under a dome because the ecosystem is otherwise non-habitable

	planetoid_type:	enumeration of planetoid types
- oceanic
- gas giant
- rocky
- oxygen
- methane

	moon_type:	enumeration of planetoid types

	commodity_type:	enumeration of known commodities.
- food
- metal
- fuel
- low bulk chemical
- low bulk machine
- high bulk chemical
- high bulk machine

	finance_type:	enumeration of known bank types.
- mafia
- system
- capital
- planetary

	order_status_type:

	 	The status of a transaction
- presale
- submitter
- rejected
- finalized

	ship_type:	
	Passenger

	Cruiser

	Etc

	equipment:	

	ship:	
	Cargo hauler

	property:	
	Warehouse

	ship parts:	
	Cargo module

	Laser

Extendable by Server Owners

	system:	list of stellar systems

	name:	name of the stellar system

	possessive:	If a location’s name is not unique, then the possessive is applied to the name for
display purposes

	planetoid:	A list of bodies orbiting the system’s sun

	name:	name of the planetoid

	type:	type of the planetoid

	moon:	A list of bodies orbiting the planetoid

	name:	name of the moon

	type:	type of the moon

	location:	A list of inhabited locations in the Stellar System

	name:	A location’s human name

	place:	

	type:	Type of the location

Someday locations will have other characteristics like:

	Orbit velocity

	Initial position

	Orbit radius

	type jump will have locations that can be jumped to

	population. Population affects the amount of commodities that a location needs or produces

	
	population_origin: list of stellar systems that the population originates in. Affects

	commodities for sale

	
	commodity consumption and production information

	
	Production should be of a specific commodity

	Consumption can be of a commodity or commodity_type

	These numbers should be weightings. Production weighting affects how likely (or how much)
a place is to sell an item

	Consumption affects how much of an item a place is likely to take

	commodity:	list of commodities that can be bought and sold
:name: name of the commodity
:type: Type of the commodity
:mean_price: average price of the commodity
:standard_deviation: How much money is there in one std deviation
:depreciation_rate: How quickly the value of a product degrades
:space: Volume the commodity consumes

	financial_institution:

	 	list of financial institutions in these stellar systems
:name: name of the institution
:type: type of institution

Someday commodity should grow a weight attribute. Weight will affect a fee for transporting the
commodity to the ship. (Perhaps. Perhaps there needs to be a way for this to be offset. Rockets
are inefficient weight. Space elevators are volume constrained. Counter grav can land a whole ship
but only high tech worlds and weightless environments (orbital facilities) have it?) To implement
this, locations would need to grow a surface_to_orbit type

	event:	list of events that can change the price of goods
:msg: Description of the event. Like headline and subheading of a news article
:affects: list of commodities affected by the event

	commodity_name:	The specific commodity that this event effects. One of name or type is filled

	commodity_type:	A type of commodity that this event affects. One of name or type is filled

	adjustment:	A numeric value to adjust the price by

	adjustment_type:

	 	How to treat the adjustment. Can be offset to add the adjustment value to
the price or percent to change the price to adjustment percent of the current price.

	ship:	A user’s ship
:type: Type of ship
:mean_price: Average price of the ship
:standard_deviation: How much the ship’s price fluctuates
:depreciation_rate: How quickly the resale value of the ship drops
:holdspace: How much space the ship has for cargo
:weaponmount: How many weapons the ship can have ready to fire

Database Schema

This closely mirrors the Shipped format. The static data should live in separate db tables from
dynamic data and be associated via foreign keys. This allows for easier changes to the static data
if an update occurs.

Tables for static data should all have _data as a suffix

Linter

There should be a static_data linter that does the following:

	Verifies the schema

	Checks everything for spelling

	Assembles a list of commodity types (in commodity and in event) and asks for confirmation if any
of the commodity_types are unknown

	All location names must be unique within a stellar_system

	All stellar_system names must be unique within the game

	All commodity names must be unique within their system

	All types (for locations, commodities, etc) must be known to the game

Dynamic Data

These pieces of data are per game instance. They change as the game progresses

Database Schema

All records have a system created id

	players:	Table of players
:username: Player’s handle
:display_name: If set, an alternate name the player can go by
:password: hashed password that the player can use to verify themselves
:cash: Amount of cash on hand

	epoch:	Number of “ticks” since the game was created. Eventually a number of calculations will
include the epoch

	bank_accounts:	Table of bank accounts that players have
:bank_id: foreign key to bank
:loan amount: amount on loan
:loan_rate: interest rate

	commodity:	

	price:	The present price this sells for

	commodity_data_id:

	 	

	location_id:	location that this is selling at

	order:	

	location:	location at which the sale takes place

	commodity_id:	commodity being bought or sold

	price:	Amount at which the user is agreeing to buy or sell

	hold_quantity:	Amount of the commodity to place in the ship’s hold

	warehouse_quantity:

	 	Amount to place in or draw from the player’s warehouse

	buy:	True if this is a buy order. False if it’s a purchase order

	status:	status of the order

	originated:	timestamp for when the order was placed

	manifest:	

	commodity_data_id:

	 	Commodity which this is

	quantity:	Amount of the commodity

	price_paid:	Average price paid for this entry. Can be used to show profit and loss reports

	average_age:	Average age this was bought ago. Used for depreciation calculations

	ship_id:	What ship this cargo is a part of

	ship:	

	ship_data_id:	Which type of ship this is

	location_id:	Where the ship is at

	ship_parts:	

	ship_part_data_id:

	 	Link to the ship part that this implements

	ship_id:	Link to the ship that this is mounted on

Urwid UI

The Urwid UI backend is a text based backend. It implements a series of static screens and menus
that the user interacts with to manage their fleet.

See also

Displaying on the console uses the Urwid library [https://urwid.org]

Naming Conventions

Toplevel UI elements in the Urwid code are called Screens. Most Screens are single area forms. The
MainScreen is the exception to this. This complex Screen is composed of
various constant status windows displaying information to the user about their ship and
surroundings, a menubar to select options from and an area for contextual content which the user can
interact with. The widgets displaying information are calld Windows and those that display the
contextual content are called Displays.

Each Display shows the user information upon which they can act. For instance, the
MarketDisplay allows the user to select Commodities to buy and sell.

Sometimes a Display needs to popup a subelement that allows the user to input more information.
These widgets are named Dialogs.

Mockups

Here there are various mockups of screens in the Urwid UI

Splash Screen

+------------------------+
 Stellar Magnate
 1.0
 (c) Toshio Kuratomi
+------------------------+

Status Bar

This is part of the frame around the Main Window:

+=Name: Hiormi -------------- Location: Earth -+

Menubar

This is the top level user interaction for the Main Window:

+---+
| (P)ort District Ship(Y)ard (F)inancial (T)ravel (M)enu |
+---+

Travel Display

This is simply a text menu that allows the user to choose a destination planet:

+-----------------------+
| (1) Mercury
| (2) Venus
| (3) Earth
| (4) Luna
| (5) Mars
| (6) Jupiter
| (7) Saturn
| (8) Uranus
| (9) Neptune
| (0) Pluto
|
| (!) Jump
+-----------------------+

Menu Dialog

The Menu Dialog lets the user perform out-of-character functions like quitting the game:

+----------+
| (s)ave
| (l)oad
| (q)uit
| (c)ontinue
+----------+

Market Display

Displays Commodities that the user can buy and sell to turn a profit:

+- Commodity -- Price - Quantity --- Hold ------ Warehouse --+
| (1) Grain $10 7.5E+200 7.5E+200 7.5E+200
| (2) Metal $100 1.7E+5 10 100
| (3) Weapons $2000 3.4E+21 1000 0
| (4) Drugs $10.1K 2.0E+10 10 0
+--+

Cargo Order Dialog

The Cargo Order Dialog lets the user input quantities of a Commodity that
they wish to buy or sell. The Dialog has a way to toggle between buying or selling the commodity.

Buy Mode:

+------------------------+
| (o) Buy () Sell
| Hold: XXX Warehouse: YYY
| Total cost: $XXX
| hold/warehouse (H)/(W)
| Quantity [_____] [MAX]
+------------------------+

Sell Mode:

+------------------------+
| () Buy (o) Sell
| Hold: XXX Warehouse: YYY
| Total sale: $XXX
| Quantity [_____] [MAX]
+------------------------+

Port Display

We will eventually have distinct types of ships to buy and sell but for the initial release we’ll
just adopt the Planetary Travel [https://archive.org/details/Big_Red_294_Planetary_Travel] style of having a spaceship that we can buy additional cargo
modules for. The Port Display lets the user buy equipment (additional cargo modules, warehouse
space, shipboard weapons, etc):

+- Equipment -------- Price --- Current --+
| (1) Cargo Space $10K 1000
| (2) Lasers $5000 1
| (3) Warehouse $15K 20000
+---+

Equipment Order Dialog

The Equipment Order Dialog lets the user fill in additional information for buying equipment for
their ship:

+------- Hold space - $42 ---+
| Total Sale: $0
| (o) Buy (o) Sell
| Current Amount:
| [MAX] Quantity [_____]
| [Place Order][Cancel]
+------------------------+

Info Window

The Info Window sits alongside the Display in the Main Screen and shows an overview of statistics
about the player and ship:

+-----------------+
| Ship:
| Minnow
| Type:
| Freighter
| Free Space:
| 1000
| Cargo:
| 500
| Warehouse:
| 10000
| Transshipment:
| 10
| Bank:
| $1K
| Cash:
| $1.5Mil
| Loan:
| $0
|
+-----------------+

Financial Display

This allows the user to deposit money and take out loans:

+-----------------+
| (1) The Syndicate
| (2) Solarian National Bank
| (3) First Terran Bank and Trust
| (4) Mercury Savings and Loan
+-----------------+

	The Syndicate:	Mob; high limit; high interest loan. Present anywhere. Deposit: low interest, 100%
safe, but may be 0-50% inaccessible at any given time

	System-wide bank:

	 	May not be present on pirate world. std loan. Deposit: low interest, Safe
unless war.

	Capital planet bank:

	 	Available on subset of system worlds. May open/close branches. std loan.
Deposit moderate interest. Sometimes bankrupts but bailout 75-95%. War, may
lose all

	Planetary bank:	Available 1 world. low interest loan. Deposit moderate interest. Sometimes
bankrupts. bailout 0-50%. War, may lose all.

Financial Dialog

Allows the user to select what they want to do at the financial institution they selected:

+--------------+
| (d)eposit
| (w)ithdraw
| (i)ncrease loan
| (r)epay loan
+--------------+

Ship Update

These are some thoughts on how to change the Ships for later versions

Fleet

+------------+
| (s)hip
| (w)eapons
+------------+

Ship

+- (B)uy ---------------+- (S)ell -----------+
| |
| (1) Scout [x2] $1K | (1) Tug [x3] $1K
| (2) Tug [x1] $1.2K | (2) Freighter [x1] $500
| (3) Freighter $1.3K |
| (4) Cruiser $1M |
| (5) Carrier $8T |
+-----------------------+--------------------+

Purchase Ship

+------------------------+
| Ship Type: Scout
| Cargo: 100
| Weapon Space: 5
| Upkeep: $20K/yr
| Cost per: $1,000
| Supply 3
|
| Total cost: $XXX
| Purchase Quantity [_____] [MAX]
+------------------------+

Weapons

+- (B)uy----------------+--- (S)ell ------------+
| (1) Laser [x10] $1K | (1) Laser [x2] $500
+-----------------------+-----------------------+

Purchase Weapons

+------------------------+
| Weapon Type: Laser
| Space: 5
| Upkeep: $1K/yr
| Cost per: $1,000
| Supply: 10
|
| Total cost: $XXX
| Quantity [_____] [MAX]
+------------------------+

Index

 A
 | M
 | Q
 | S
 | U

A

 	
 	action.ship.movement_attempt() (built-in function)

 	
 	action.user.login_attempt() (built-in function)

 	action.user.order() (built-in function)

M

 	
 	market.event() (built-in function)

Q

 	
 	query.cargo.info() (built-in function)

 	
 	query.user.info() (built-in function)

S

 	
 	ship.cargo.update() (built-in function)

 	ship.destinations() (built-in function)

 	ship.equip.update() (built-in function)

 	
 	ship.info() (built-in function)

 	ship.moved() (built-in function)

 	ship.movement_failure() (built-in function)

U

 	
 	ui.urwid.message() (built-in function)

 	ui.urwid.order_info() (built-in function)

 	user.cash.update() (built-in function)

 	
 	user.info() (built-in function)

 	user.login_failure() (built-in function)

 	user.login_success() (built-in function)

 	user.order_failure() (built-in function)

 nav.xhtml

 Table of Contents

 		Welcome to Stellar Magnate

 		Design Documentation

 		Mechanics

 		Market

 		Ship

 		Finances

 		Movement

 		Combat

 		Events

 		User events

 		Ship Events

 		Market Events

 		Action Events

 		Query Events

 		UI Events

 		Data Model

 		Static Data

 		Dynamic Data

 		Urwid UI

 		Naming Conventions

 		Mockups

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

